10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H 11 #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H 24 template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
25 struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
28 typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
29 typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar;
31 typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
32 typename traits<RhsXprType>::StorageKind>::ret StorageKind;
33 typedef typename promote_index_type<typename traits<LhsXprType>::Index,
34 typename traits<RhsXprType>::Index>::type
Index;
35 typedef typename LhsXprType::Nested LhsNested;
36 typedef typename RhsXprType::Nested RhsNested;
37 typedef typename remove_reference<LhsNested>::type _LhsNested;
38 typedef typename remove_reference<RhsNested>::type _RhsNested;
41 static const int NumDimensions = traits<LhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
42 static const int Layout = traits<LhsXprType>::Layout;
43 typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val,
44 typename traits<LhsXprType>::PointerType,
45 typename traits<RhsXprType>::PointerType>::type
53 template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
54 struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>,
Eigen::Dense>
56 typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type;
59 template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
60 struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type>
62 typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type;
65 template<
typename Indices_,
typename LeftArgType_,
typename RightArgType_,
typename OutputKernelType_,
typename Device_>
66 struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > {
67 typedef Indices_ Indices;
68 typedef LeftArgType_ LeftArgType;
69 typedef RightArgType_ RightArgType;
70 typedef OutputKernelType_ OutputKernelType;
71 typedef Device_ Device;
74 static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
78 template <
typename LhsScalar,
typename RhsScalar>
79 struct TensorContractionBlockMemAllocator {
80 typedef void* BlockMemHandle;
82 template <
typename Device>
83 EIGEN_DEVICE_FUNC
static BlockMemHandle allocate(Device& d,
const Index bm,
86 LhsScalar** lhs_block,
87 RhsScalar** rhs_block) {
88 eigen_assert(lhs_block);
89 eigen_assert(rhs_block);
90 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
91 char* block_mem =
static_cast<char*
>(d.allocate(sz.lhs_size + sz.rhs_size));
92 eigen_assert(block_mem);
93 *lhs_block =
reinterpret_cast<LhsScalar*
>(block_mem);
94 *rhs_block =
reinterpret_cast<RhsScalar*
>(block_mem + sz.lhs_size);
98 template <
typename Device>
99 EIGEN_DEVICE_FUNC
static BlockMemHandle allocateSlices(
102 std::vector<LhsScalar*>* lhs_blocks,
103 std::vector<RhsScalar*>* rhs_blocks) {
104 eigen_assert(num_slices > 0);
105 eigen_assert(num_lhs >= 0 && num_rhs >= 0);
106 eigen_assert(num_lhs == 0 || lhs_blocks);
107 eigen_assert(num_rhs == 0 || rhs_blocks);
108 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
109 void* block_mem = d.allocate(
110 (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices);
111 eigen_assert(block_mem);
112 char* mem =
static_cast<char*
>(block_mem);
114 for (
Index x = 0; x < num_slices; x++) {
115 if (num_lhs > 0) lhs_blocks[x].resize(num_lhs);
116 for (
Index m = 0; m < num_lhs; m++) {
117 lhs_blocks[x][m] =
reinterpret_cast<LhsScalar*
>(mem);
120 if (num_rhs > 0) rhs_blocks[x].resize(num_rhs);
121 for (
Index n = 0; n < num_rhs; n++) {
122 rhs_blocks[x][n] =
reinterpret_cast<RhsScalar*
>(mem);
130 template <
typename Device>
131 EIGEN_DEVICE_FUNC
static void deallocate(Device& d, BlockMemHandle handle) {
132 d.deallocate(handle);
140 EIGEN_DEVICE_FUNC
static BlockSizes ComputeLhsRhsBlockSizes(
const Index bm,
143 Index align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
145 sz.lhs_size = divup<Index>(bm * bk *
sizeof(LhsScalar), align) * align;
146 sz.rhs_size = divup<Index>(bn * bk *
sizeof(RhsScalar), align) * align;
179 template <
typename ResScalar,
typename LhsScalar,
typename RhsScalar,
180 typename StorageIndex,
typename OutputMapper,
typename LhsMapper,
182 struct TensorContractionKernel {
185 enum { HasBeta =
false };
188 TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_,
189 StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
190 : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {}
193 typedef LhsScalar* LhsBlock;
194 typedef RhsScalar* RhsBlock;
197 typedef TensorContractionBlockMemAllocator<LhsScalar, RhsScalar>
199 typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle;
201 typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
203 typedef internal::gemm_pack_lhs<
204 LhsScalar, StorageIndex,
typename LhsMapper::SubMapper, Traits::mr,
205 Traits::LhsProgress,
typename Traits::LhsPacket4Packing,
ColMajor>
208 typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
209 typename RhsMapper::SubMapper, Traits::nr,
213 typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
214 OutputMapper, Traits::mr, Traits::nr,
218 template <
typename Device>
219 EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device& d, LhsBlock* lhs_block,
220 RhsBlock* rhs_block) {
221 return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block);
224 template <
typename Device>
225 EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(
226 Device& d,
const StorageIndex num_lhs,
const StorageIndex num_rhs,
227 const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks,
228 std::vector<RhsBlock>* rhs_blocks) {
229 return BlockMemAllocator::allocateSlices(
230 d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks);
233 template <
typename Device>
234 EIGEN_DEVICE_FUNC
static void deallocate(Device& d, BlockMemHandle handle) {
235 BlockMemAllocator::deallocate(d, handle);
238 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void packLhs(
239 LhsBlock* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
240 const StorageIndex depth,
const StorageIndex rows) {
241 LhsPacker()(*lhsBlock, data_mapper, depth, rows, 0,
245 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void packRhs(
246 RhsBlock* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
247 const StorageIndex depth,
const StorageIndex cols) {
248 RhsPacker()(*rhsBlock, data_mapper, depth, cols);
251 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void invoke(
252 const OutputMapper& output_mapper,
const LhsBlock& lhsBlock,
253 const RhsBlock& rhsBlock,
const StorageIndex rows,
254 const StorageIndex depth,
const StorageIndex cols,
255 const ResScalar alpha,
const ResScalar beta) {
257 eigen_assert(beta == ResScalar(1));
258 static const int kComputeStrideFromBlockDimensions = -1;
259 GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
260 kComputeStrideFromBlockDimensions,
261 kComputeStrideFromBlockDimensions,
269 const StorageIndex m;
270 const StorageIndex k;
271 const StorageIndex n;
272 const StorageIndex bm;
273 const StorageIndex bk;
274 const StorageIndex bn;
281 struct TensorContractionParams {
284 bool swapped_arguments;
294 struct NoOpOutputKernel {
310 template <
typename Index,
typename Scalar>
311 EIGEN_ALWAYS_INLINE
void operator()(
312 const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper,
313 const TensorContractionParams& params,
Index i,
315 EIGEN_UNUSED_VARIABLE(output_mapper);
316 EIGEN_UNUSED_VARIABLE(params);
317 EIGEN_UNUSED_VARIABLE(i);
318 EIGEN_UNUSED_VARIABLE(j);
319 EIGEN_UNUSED_VARIABLE(num_rows);
320 EIGEN_UNUSED_VARIABLE(num_cols);
324 template<
typename Indices,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType = const NoOpOutputKernel>
325 class TensorContractionOp :
public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors>
328 typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
329 typedef typename internal::gebp_traits<
typename LhsXprType::CoeffReturnType,
330 typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
331 typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
332 typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
333 typedef typename Eigen::internal::traits<TensorContractionOp>::Index
Index;
335 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
336 const LhsXprType& lhs,
const RhsXprType& rhs,
const Indices& dims,
337 const OutputKernelType& output_kernel = OutputKernelType())
338 : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
339 m_output_kernel(output_kernel) {}
342 const Indices& indices()
const {
return m_indices; }
346 const typename internal::remove_all<typename LhsXprType::Nested>::type&
347 lhsExpression()
const {
return m_lhs_xpr; }
350 const typename internal::remove_all<typename RhsXprType::Nested>::type&
351 rhsExpression()
const {
return m_rhs_xpr; }
354 const OutputKernelType& outputKernel()
const {
return m_output_kernel; }
357 typename LhsXprType::Nested m_lhs_xpr;
358 typename RhsXprType::Nested m_rhs_xpr;
359 const Indices m_indices;
360 const OutputKernelType m_output_kernel;
364 template<
typename Derived>
365 struct TensorContractionEvaluatorBase : internal::no_assignment_operator
367 typedef typename internal::traits<Derived>::Indices Indices;
368 typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
369 typedef typename internal::traits<Derived>::RightArgType RightArgType;
370 typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType;
371 typedef typename internal::traits<Derived>::Device Device;
373 typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
374 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
375 typedef typename XprType::Index
Index;
376 typedef typename XprType::CoeffReturnType CoeffReturnType;
377 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
378 typedef StorageMemory<Scalar, Device> Storage;
379 typedef typename Storage::Type EvaluatorPointerType;
383 PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
385 PreferBlockAccess =
false,
386 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
392 typedef internal::TensorBlockNotImplemented TensorBlock;
399 typedef typename internal::conditional<
400 static_cast<int>(Layout) == static_cast<int>(
ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
401 typedef typename internal::conditional<
402 static_cast<int>(Layout) == static_cast<int>(
ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
404 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluatorType;
405 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluatorType;
407 static const int LDims =
408 internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
409 static const int RDims =
410 internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
411 static const int ContractDims = internal::array_size<Indices>::value;
412 static const int NumDims = LDims + RDims - 2 * ContractDims;
414 typedef array<Index, ContractDims> contract_t;
415 typedef array<
Index, LDims - ContractDims> left_nocontract_t;
416 typedef array<
Index, RDims - ContractDims> right_nocontract_t;
418 typedef DSizes<Index, NumDims> Dimensions;
421 TensorContractionEvaluatorBase(
const XprType& op,
const Device& device)
422 : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(
ColMajor)>(),
423 op.lhsExpression(), op.rhsExpression()), device),
424 m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(
ColMajor)>(),
425 op.rhsExpression(), op.lhsExpression()), device),
427 m_output_kernel(op.outputKernel()),
429 EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
430 static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
431 YOU_MADE_A_PROGRAMMING_MISTAKE);
434 DSizes<Index, LDims> eval_left_dims;
435 DSizes<Index, RDims> eval_right_dims;
436 array<IndexPair<Index>, ContractDims> eval_op_indices;
437 if (static_cast<int>(Layout) == static_cast<int>(
ColMajor)) {
439 for (
int i = 0; i < LDims; i++) {
440 eval_left_dims[i] = m_leftImpl.dimensions()[i];
442 for (
int i = 0; i < RDims; i++) {
443 eval_right_dims[i] = m_rightImpl.dimensions()[i];
446 for (
int i = 0; i < ContractDims; i++) {
447 eval_op_indices[i].first = op.indices()[i].first;
448 eval_op_indices[i].second = op.indices()[i].second;
452 for (
int i = 0; i < LDims; i++) {
453 eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
455 for (
int i = 0; i < RDims; i++) {
456 eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
460 for (
int i = 0; i < ContractDims; i++) {
461 eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
462 eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
468 for (
int i = 0; i < ContractDims; i++) {
469 for (
int j = i + 1; j < ContractDims; j++) {
470 eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
471 eval_op_indices[j].second != eval_op_indices[i].second &&
472 "contraction axes should be unique");
473 if (eval_op_indices[j].first < eval_op_indices[i].first) {
474 numext::swap(eval_op_indices[j], eval_op_indices[i]);
479 array<Index, LDims> lhs_strides;
481 for (
int i = 0; i < LDims-1; ++i) {
482 lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
485 array<Index, RDims> rhs_strides;
487 for (
int i = 0; i < RDims-1; ++i) {
488 rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
491 if (m_i_strides.size() > 0) m_i_strides[0] = 1;
492 if (m_j_strides.size() > 0) m_j_strides[0] = 1;
493 if (m_k_strides.size() > 0) m_k_strides[0] = 1;
503 m_lhs_inner_dim_contiguous =
true;
505 Index nocontract_idx = 0;
507 for (
int i = 0; i < LDims; i++) {
509 bool contracting =
false;
510 for (
int j = 0; j < ContractDims; j++) {
511 if (eval_op_indices[j].first == i) {
518 m_dimensions[dim_idx] = eval_left_dims[i];
519 m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
521 m_lhs_inner_dim_contiguous =
false;
523 if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
524 m_i_strides[nocontract_idx+1] =
525 m_i_strides[nocontract_idx] * eval_left_dims[i];
527 m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
535 for (
int i = 0; i < RDims; i++) {
536 bool contracting =
false;
538 for (
int j = 0; j < ContractDims; j++) {
539 if (eval_op_indices[j].second == i) {
545 m_dimensions[dim_idx] = eval_right_dims[i];
546 if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
547 m_j_strides[nocontract_idx+1] =
548 m_j_strides[nocontract_idx] * eval_right_dims[i];
550 m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
552 m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
563 m_rhs_inner_dim_contiguous =
true;
564 m_rhs_inner_dim_reordered =
false;
565 for (
int i = 0; i < ContractDims; i++) {
566 Index left = eval_op_indices[i].first;
567 Index right = eval_op_indices[i].second;
569 Index size = eval_left_dims[left];
570 eigen_assert(size == eval_right_dims[right] &&
571 "Contraction axes must be same size");
573 if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) {
574 m_k_strides[i+1] = m_k_strides[i] * size;
576 m_k_size = m_k_strides[i] * size;
578 m_left_contracting_strides[i] = lhs_strides[left];
579 m_right_contracting_strides[i] = rhs_strides[right];
581 if (i > 0 && right < eval_op_indices[i-1].second) {
582 m_rhs_inner_dim_reordered =
true;
585 m_rhs_inner_dim_contiguous =
false;
590 if (static_cast<int>(Layout) == static_cast<int>(
RowMajor)) {
591 for (
int i = 0, j = NumDims - 1; i < j; i++, j--) {
592 numext::swap(m_dimensions[i], m_dimensions[j]);
600 m_tensor_contraction_params.swapped_arguments =
static_cast<int>(Layout) ==
RowMajor;
603 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
605 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
606 m_leftImpl.evalSubExprsIfNeeded(NULL);
607 m_rightImpl.evalSubExprsIfNeeded(NULL);
612 m_result =
static_cast<EvaluatorPointerType
>(m_device.allocate(dimensions().TotalSize() *
sizeof(Scalar)));
618 #ifdef EIGEN_USE_THREADS 619 template <
typename EvalSubExprsCallback>
620 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(
621 EvaluatorPointerType dest, EvalSubExprsCallback done) {
622 m_leftImpl.evalSubExprsIfNeededAsync(
nullptr, [
this, done, dest](
bool) {
623 m_rightImpl.evalSubExprsIfNeededAsync(
nullptr, [
this, done, dest](
bool) {
625 evalToAsync(dest, [done]() { done(
false); });
627 m_result =
static_cast<EvaluatorPointerType
>(
628 m_device.allocate(dimensions().TotalSize() *
sizeof(Scalar)));
629 evalToAsync(m_result, [done]() { done(
true); });
634 #endif // EIGEN_USE_THREADS 636 #ifndef TENSOR_CONTRACTION_DISPATCH 637 #define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \ 638 if (this->m_lhs_inner_dim_contiguous) { \ 639 if (this->m_rhs_inner_dim_contiguous) { \ 640 if (this->m_rhs_inner_dim_reordered) { \ 641 METHOD<true, true, true, ALIGNMENT> ARGS; \ 643 METHOD<true, true, false, ALIGNMENT> ARGS; \ 646 if (this->m_rhs_inner_dim_reordered) { \ 647 METHOD<true, false, true, ALIGNMENT> ARGS; \ 649 METHOD<true, false, false, ALIGNMENT> ARGS; \ 653 if (this->m_rhs_inner_dim_contiguous) { \ 654 if (this->m_rhs_inner_dim_reordered) { \ 655 METHOD<false, true, true, ALIGNMENT> ARGS; \ 657 METHOD<false, true, false, ALIGNMENT> ARGS; \ 660 if (this->m_rhs_inner_dim_reordered) { \ 661 METHOD<false, false, true, ALIGNMENT> ARGS; \ 663 METHOD<false, false, false, ALIGNMENT> ARGS; \ 669 #ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH 670 #define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \ 671 if (this->m_lhs_inner_dim_contiguous) { \ 672 if (this->m_rhs_inner_dim_contiguous) { \ 673 if (this->m_rhs_inner_dim_reordered) { \ 674 (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \ 676 (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \ 679 if (this->m_rhs_inner_dim_reordered) { \ 680 (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \ 682 (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \ 686 if (this->m_rhs_inner_dim_contiguous) { \ 687 if (this->m_rhs_inner_dim_reordered) { \ 688 (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \ 690 (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \ 693 if (this->m_rhs_inner_dim_reordered) { \ 694 (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \ 696 (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \ 702 EIGEN_DEVICE_FUNC
void evalTo(Scalar* buffer)
const {
703 static_cast<const Derived*
>(
this)->
template evalProduct<Unaligned>(buffer);
706 #ifdef EIGEN_USE_THREADS 707 template <
typename EvalToCallback>
708 void evalToAsync(Scalar* buffer, EvalToCallback done)
const {
709 static_cast<const Derived*
>(
this)
710 ->
template evalProductAsync<EvalToCallback, Unaligned>(buffer,
713 #endif // EIGEN_USE_THREADS 715 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
716 bool rhs_inner_dim_reordered,
int Alignment>
717 void evalProductSequential(Scalar* buffer)
const {
718 if (this->m_j_size == 1) {
719 this->
template evalGemv<lhs_inner_dim_contiguous,
720 rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
723 this->
template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
724 rhs_inner_dim_reordered, Alignment>(buffer);
728 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment>
729 #if !defined(EIGEN_HIPCC) 732 void evalGemv(Scalar* buffer)
const {
733 const Index rows = m_i_size;
734 const Index cols = m_k_size;
736 typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
737 typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
738 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
739 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
740 const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
741 const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
744 typedef internal::TensorContractionInputMapper<LhsScalar,
Index, internal::Lhs,
745 LeftEvaluator, left_nocontract_t,
746 contract_t, lhs_packet_size,
747 lhs_inner_dim_contiguous,
748 false, lhs_alignment> LhsMapper;
750 typedef internal::TensorContractionInputMapper<RhsScalar,
Index, internal::Rhs,
751 RightEvaluator, right_nocontract_t,
752 contract_t, rhs_packet_size,
753 rhs_inner_dim_contiguous,
754 rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
756 LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides,
757 m_left_contracting_strides, m_k_strides);
758 RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides,
759 m_right_contracting_strides, m_k_strides);
761 const Scalar alpha(1);
762 const Index resIncr(1);
765 m_device.memset(buffer, 0, rows *
sizeof(Scalar));
767 internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run(
768 rows, cols, lhs, rhs,
769 buffer, resIncr, alpha);
771 typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
772 m_output_kernel(OutputMapper(buffer, rows), m_tensor_contraction_params,
773 static_cast<Index>(0), static_cast<Index>(0), rows,
774 static_cast<Index>(1));
777 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment>
778 #if !defined(EIGEN_HIPCC) 781 void evalGemm(Scalar* buffer)
const {
783 const Index k = this->m_k_size;
784 this->
template evalGemmPartial<lhs_inner_dim_contiguous,
785 rhs_inner_dim_contiguous,
786 rhs_inner_dim_reordered,
787 Alignment,
true>(buffer, 0, k, 1);
790 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
791 bool rhs_inner_dim_reordered,
int Alignment>
792 EIGEN_DEVICE_FUNC
void evalGemmPartialWithoutOutputKernel(
793 Scalar* buffer, Index k_start, Index k_end,
int num_threads)
const {
794 evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
795 rhs_inner_dim_reordered, Alignment,
796 false>(buffer, k_start, k_end,
800 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment,
bool use_output_kernel>
801 EIGEN_DEVICE_FUNC
void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end,
int num_threads)
const {
802 eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size);
804 const Index k_slice = k_end - k_start;
807 const Index m = this->m_i_size;
810 const Index n = this->m_j_size;
813 typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
814 typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
816 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
817 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
819 const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
820 const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
822 typedef internal::TensorContractionInputMapper<LhsScalar,
Index, internal::Lhs,
823 LeftEvaluator, left_nocontract_t,
824 contract_t, lhs_packet_size,
825 lhs_inner_dim_contiguous,
828 typedef internal::TensorContractionInputMapper<RhsScalar,
Index, internal::Rhs,
829 RightEvaluator, right_nocontract_t,
830 contract_t, rhs_packet_size,
831 rhs_inner_dim_contiguous,
832 rhs_inner_dim_reordered,
Unaligned> RhsMapper;
834 typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
836 typedef internal::TensorContractionKernel<
837 Scalar, LhsScalar, RhsScalar,
Index, OutputMapper, LhsMapper, RhsMapper>
838 TensorContractionKernel;
841 LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
842 this->m_left_contracting_strides, this->m_k_strides);
844 RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
845 this->m_right_contracting_strides, this->m_k_strides);
847 OutputMapper output(buffer, m);
850 internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar,
851 Index, internal::ShardByCol>
852 blocking(k_slice, m, n, num_threads);
853 const Index kc = blocking.kc();
854 const Index mc = numext::mini(m, blocking.mc());
855 const Index nc = numext::mini(n, blocking.nc());
857 typedef typename TensorContractionKernel::LhsBlock LhsBlock;
858 typedef typename TensorContractionKernel::RhsBlock RhsBlock;
863 TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc);
865 typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
866 const BlockMemHandle packed_mem =
867 kernel.allocate(this->m_device, &blockA, &blockB);
871 if (!TensorContractionKernel::HasBeta) {
872 this->m_device.memset(buffer, 0, m * n *
sizeof(Scalar));
875 for(Index i2=0; i2<m; i2+=mc)
877 const Index actual_mc = numext::mini(i2+mc,m)-i2;
878 for (Index k2 = k_start; k2 < k_end; k2 += kc) {
880 const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
881 kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
885 const Scalar alpha = Scalar(1);
886 const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start)
891 for (Index j2 = 0; j2 < n; j2 += nc) {
893 const Index actual_nc = numext::mini(j2 + nc, n) - j2;
894 kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc,
899 const OutputMapper output_mapper = output.getSubMapper(i2, j2);
900 kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc,
901 actual_nc, alpha, beta);
904 if (use_output_kernel && k2 + kc >= k_end) {
905 m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
906 actual_mc, actual_nc);
912 kernel.deallocate(this->m_device, packed_mem);
915 EIGEN_STRONG_INLINE
void cleanup() {
916 m_leftImpl.cleanup();
917 m_rightImpl.cleanup();
919 if (m_result != NULL) {
920 m_device.deallocate(m_result);
925 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const {
926 return m_result[index];
929 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool)
const {
930 return TensorOpCost(
sizeof(CoeffReturnType), 0, 0);
933 template<
int LoadMode>
934 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const {
935 return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
938 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data()
const {
return m_result; }
941 Dimensions m_dimensions;
943 contract_t m_k_strides;
944 contract_t m_left_contracting_strides;
945 contract_t m_right_contracting_strides;
947 bool m_lhs_inner_dim_contiguous;
948 bool m_rhs_inner_dim_contiguous;
949 bool m_rhs_inner_dim_reordered;
951 left_nocontract_t m_i_strides;
952 right_nocontract_t m_j_strides;
953 left_nocontract_t m_left_nocontract_strides;
954 right_nocontract_t m_right_nocontract_strides;
960 TensorContractionParams m_tensor_contraction_params;
962 TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
963 TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
964 const Device EIGEN_DEVICE_REF m_device;
965 OutputKernelType m_output_kernel;
966 EvaluatorPointerType m_result;
971 template<
typename Indices,
typename LeftArgType,
typename RightArgType,
typename OutputKernelType,
typename Device>
972 struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> :
973 public TensorContractionEvaluatorBase<
974 TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
975 typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
976 typedef TensorContractionEvaluatorBase<Self> Base;
978 typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
979 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
980 typedef typename XprType::Index
Index;
981 typedef typename XprType::CoeffReturnType CoeffReturnType;
982 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
985 Layout = TensorEvaluator<LeftArgType, Device>::Layout
992 typedef typename internal::conditional<
993 static_cast<int>(Layout) == static_cast<int>(
ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
994 typedef typename internal::conditional<
995 static_cast<int>(Layout) == static_cast<int>(
ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
997 static const int LDims =
998 internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
999 static const int RDims =
1000 internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
1001 static const int ContractDims = internal::array_size<Indices>::value;
1003 typedef array<Index, ContractDims> contract_t;
1004 typedef array<
Index, LDims - ContractDims> left_nocontract_t;
1005 typedef array<
Index, RDims - ContractDims> right_nocontract_t;
1007 static const int NumDims = LDims + RDims - 2 * ContractDims;
1010 typedef DSizes<Index, NumDims> Dimensions;
1012 TensorEvaluator(
const XprType& op,
const Device& device) :
1013 Base(op, device) { }
1015 template <
int Alignment>
1016 void evalProduct(Scalar* buffer)
const {
1017 TENSOR_CONTRACTION_DISPATCH(this->
template evalProductSequential, Alignment, (buffer));
1023 #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index